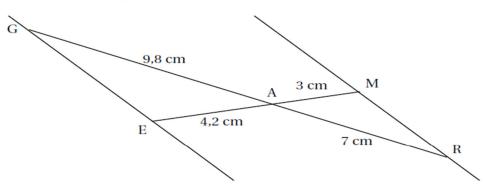
Exercice 13


Pour chacune des quatre affirmations suivantes, dire si elle vraie ou fausse en expliquant soigneusement la réponse.

1. Adriana doit effectuer le calcul suivant :

$$-\frac{7}{5} + \frac{6}{5} \times \frac{4}{7}$$

Affirmation 1 : Le résultat qu'elle obtient sous forme de fraction irréductible est $-\frac{4}{35}$.

2. Sur la figure ci-dessous, qui n'est pas à l'échelle, les points G, A et R sont alignés et les points E, A et M sont alignés.

Affirmation 2 : Les droites (GE) et (MR) sont parallèles.

- 3. Affirmation 3 : La décomposition en produit de facteurs premiers de 126 est 2 × 7 × 9.
- **4.** Dans la recette de sauce de salade de Thomas, les volumes de moutarde, de vinaigre et d'huile sont dans le ratio de 1 : 3 : 7.

Affirmation 4 : Pour obtenir 330 mL de sauce de salade, il faut utiliser 210 mL d'huile

Exercice 14

Cet exercice, en deux parties, est un questionnaire à choix multiples (QCM). Pour chaque question, parmi les réponses proposées, une seule est exacte. Recopier le numéro de la question et indiquer la réponse choisie. Aucune justification n'est attendue ici

Partie A

Dans cette partie, on s'intéresse au programme ci-dessous, composé d'un bloc « triangle équilatéral » et d'un script principal :

On rappelle que l'instruction « s'orienter à 90 » signifie s'orienter vers la droite.

Questions	Réponse A	Réponse B	Réponse C
1. On souhaite construire le tri- angle équilatéral ci-dessous. Le stylo est orienté à 90° au dé- part comme ci-dessous. Départ Compléter le script du bloc « triangle équilatéral » avec la valeur qui convient.	60°	100°	120°
2. Parmi les trois figures, la- quelle est obtenue avec le script principal?	$\triangleleft \bigtriangleup$	$ \land \land$	\bigtriangledown
3. Quel polygone obtient-on si on remplace dans le script principal, la boucle « répéter 2 fois » par une boucle « répéter 6 fois »?	Un parallélo- gramme	Un hexagone	Un losange

Partie B

Questions	Réponse A	Réponse B	Réponse C
$1. \left(\frac{2}{3} - \frac{1}{3} \times \frac{7}{5}\right) \div \frac{4}{3} =$	$\frac{3}{15} \times \frac{4}{3}$	$\left(\frac{1}{3} \times \frac{7}{5}\right) \div \frac{4}{3}$	$\frac{3}{15} \times \frac{3}{4}$
2. L'écriture scientifique de $302, 4 \times 10^{18}$ est :	$3,024\times10^{16}$	$3,024 \times 10^{20}$	$0,3024 \times 10^{21}$
3. On donne ci-dessous la masse de 8 bis- cuits différents : 12 g; 10 g; 18 g; 8 g; 12 g; 15 g; 11 g; 13 g Suite à une erreur de mesure, le biscuit pesant 18 g pèse en fait 16 g. Une fois cette erreur corrigée, la valeur de la médiane sera :	Plus petite.	La même.	Plus grande.

Exercice 15

Le graphique ci-dessous représente les deux tarifs pratiqués dans une salle de sport, selon le nombre d'heures effectuées :

- la droite (d_1) est la représentation graphique du tarif « liberté »
- la droite (d_2) est la représentation graphique du tarif « abonné »

- Le prix payé avec le tarif « liberté » est-il proportionnel au nombre d'heures effectuées dans la salle de sport? Expliquer la réponse.
- 2. On appelle :
 - f la fonction qui, au nombre d'heures effectuées, associe le prix payé en euro avec le tarif « liberté »
 - g la fonction qui, au nombre d'heures effectuées, associe le prix payé en euro avec le tarif « abonné »

Répondre aux questions suivantes par lecture graphique :

- a. Quelle est l'image de 5 par la fonction f?
- b. Quel est l'antécédent de 10 par la fonction g?
- À l'aide du graphique, indiquer le tarif parmi les deux proposés qui est le plus avantageux pour une personne selon le nombre d'heures qu'elle souhaite effectuer dans la salle de sport.
- Déterminer le prix payé avec le tarif « liberté » pour 15 heures effectuées. Expliquer la démarche, même si elle n'est pas aboutie.

Exercice 16

Situation 1

Décomposer en produit de facteurs premiers le nombre 780. *Aucune justification n'est attendue.*

Situation 2

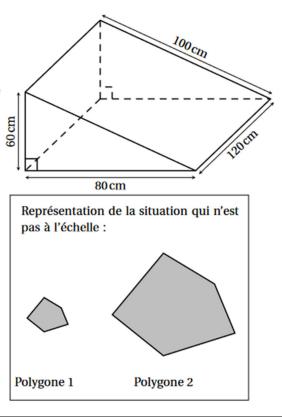
On rappelle qu'un jeu de 32 cartes est composé de quatre familles (trèfle, carreau, cœur, pique). Chaque famille est composée de huit cartes : 7,8,9, 10, valet, dame, roi et as. L'expérience aléatoire consiste à tirer une carte au hasard dans ce jeu de 32 cartes.

- 1. Quelle est la probabilité d'obtenir le 8 de pique? Aucune justification n'est attendue.
- 2. Quelle est la probabilité d'obtenir un roi ou un cœur? Aucune justification n'est attendue.

Situation 3

Développer et réduire l'expression *A*. A = (2x + 5)(3x - 4)

Situation 4

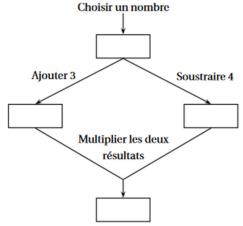

- Quel est le volume, en cm³, de ce prisme droit?
- 2. Convertir ce résultat en litre. Rappel : $1 L = 1 dm^3$

Situation 5

Le polygone 2 est un agrandissement du polygone 1.

Le coefficient de cet agrandissement est 3. L'aire du polygone 1 est égale à 11 cm^2 .

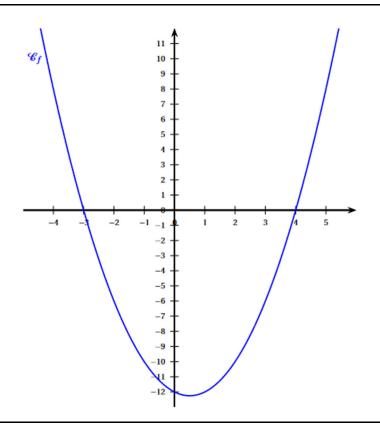
Quelle est l'aire du polygone 2?



Exercice 17

- On considère le programme A défini par le schéma ci-contre :
 - a. Vérifier que le résultat est 60 si le nombre choisi au départ est -8.
 - b. On appelle x le nombre de départ et on admet que le résultat obtenu avec le programme de calcul est donné par l'expression :

(x+3)(x-4). Résoudre (x+3)(x-4) = 0.


En déduire quels nombres de départ il faut choisir pour obtenir 0 comme résultat.

 On rappelle que x désigne le nombre de départ du programme de calcul et que le résultat obtenu avec le programme de calcul est donné par l'expression : (x + 3)(x - 4).
 On appelle f la fonction qui, à x, associe le résultat du programme de calcul. La représentation graphique & f de la fonction f est donnée en ANNEXE.

- **a.** Montrer que $f(x) = x^2 x 12$.
- **b.** Calculer $f\left(\frac{1}{2}\right)$
- c. Déterminer graphiquement les antécédents de -6 par la fonction f.
 On pourra éventuellement laisser les traits de construction sur l'ANNEXE à rendre avec la copie.
- On considère la fonction g définie par g(x) = 3x 7.
 On a utilisé un tableur pour réaliser un tableau de valeurs de cette fonction.
 - a. Quelle formule a-t-on écrite dans la cellule B2 avant de l'étirer vers le bas?
 - b. Tracer la représentation graphique de la fonction g dans le repère en ANNEXE à rendre avec la cople.
 - **c.** Déterminer graphiquement les nombres qui ont la même image par les fonctions *f* et *g*. On pourra laisser apparents les traits de construction sur l'AN-NEXE à rendre avec la copie.

	Α	B
1	x	g(x)
2	-5	-22
3	-4	-19
4	-3	-16
5	-2	-13
6	-1	-10
7	0	-7
8	1	-4
9	2	-1
10	3	2
11	4	5
12	5	8
13	6	11

