DIPLÔME NATIONAL DU BREVET SESSION 2019

MATHEMATIQUES

Série générale

Durée de l'épreuve : 2 h 00

100 points

Dès que le sujet vous est remis, assurez-vous qu'il est complet.

Ce sujet comporte 8 pages numérotées de la page 1 sur 8 à la page 8 sur 8.

L'usage de tout modèle de calculatrice, avec ou sans mode examen, est autorisé.

Le sujet est constitué de six exercices indépendants.

Le candidat peut les traiter dans l'ordre qui lui convient.

L'annexe 1 située en page 8 est à rendre avec la copie.

Exercice 1	13 points					
Exercice 2	18 points					
Exercice 3	17 points					
Exercice 4	10 points					
Exercice 5	22 points					
Exercice 6	20 points					

L'évaluation prend en compte la clarté et la précision des raisonnements ainsi que, plus largement, la qualité de la rédaction. Elle prend en compte les essais et les démarches engagées, même non aboutis.

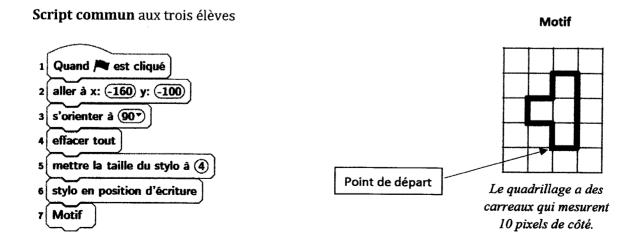
19GENMATMEAG2

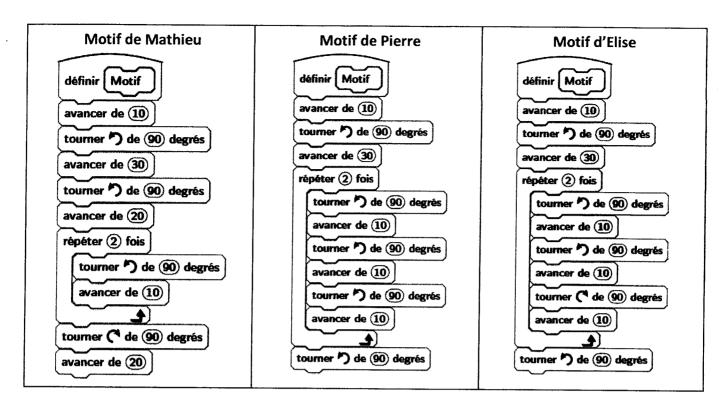
Exercice 1 (13 points)

Damien a fabriqué trois dés à six faces parfaitement équilibrés mais un peu particuliers. Sur les faces du premier dé sont écrits les six plus petits nombres pairs strictement positifs : 2 ; 4 ; 6 ;

8;10;12.

Sur les faces du deuxième dé sont écrits les six plus petits nombres impairs positifs.

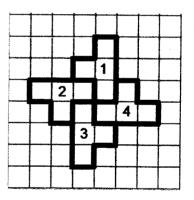

Sur les faces du troisième dé sont écrits les six plus petits nombres premiers. Après avoir lancé un dé, on note le nombre obtenu sur la face du dessus.


- 1. Quels sont les six nombres figurant sur le deuxième dé ? Quels sont les six nombres figurant sur le troisième dé ?
- 2. Zoé choisit le troisième dé et le lance. Elle met au carré le nombre obtenu. Léo choisit le premier dé et le lance. Il met au carré le nombre obtenu.
 - a. Zoé a obtenu un carré égal à 25. Quel était le nombre lu sur le dé qu'elle a lancé ?
 - b. Quelle est la probabilité que Léo obtienne un carré supérieur à celui obtenu par Zoé?
- 3. Mohamed choisit un des trois dés et le lance quatre fois de suite. Il multiplie les quatre nombres obtenus et obtient 525.
 - a. Peut-on déterminer les nombres obtenus lors des quatre lancers ? Justifier.
 - b. Peut-on déterminer quel est le dé choisi par Mohamed ? Justifier.

Exercice 2 (18 points)

« S'orienter à 90 » signifie que l'on se tourne vers la droite.

Mathieu, Pierre et Elise souhaitent tracer le motif ci-dessous à l'aide de leur ordinateur. Ils commencent tous par le script commun ci-dessous, mais écrivent un script Motif différent.


- 1. Tracer le motif de Mathieu en prenant comme échelle : 1 cm pour 10 pixels.
- 2. Quel élève a un script permettant d'obtenir le motif souhaité ? On ne demande pas de justifier.

3.

a. On utilise ce motif pour obtenir la figure ci-contre.

Quelle transformation du plan permet de passer à la fois du motif 1 au motif 2, du motif 2 au motif 3 et du motif 3 au motif 4?

b. Modifier le **script commun** à partir de la ligne 7 incluse pour obtenir la figure voulue. On écrira sur la copie uniquement la partie modifiée. Vous pourrez utiliser certaines ou toutes les instructions suivantes :

4. Un élève trace les deux figures A et B que vous trouverez en **ANNEXE 1.1**Placer sur cette annexe, **qui est à rendre avec la copie**, le centre O de la symétrie centrale qui transforme la figure A en figure B.

Exercice 3 (17 points)

Le premier juillet 2018, la vitesse maximale autorisée sur les routes à double sens de circulation, sans séparateur central, a été abaissée de 90 km/h à 80 km/h.

En 2016, 1911 personnes ont été tuées sur les routes à double sens de circulation, sans séparateur central, ce qui représente environ 55 % des décès sur l'ensemble des routes en France.

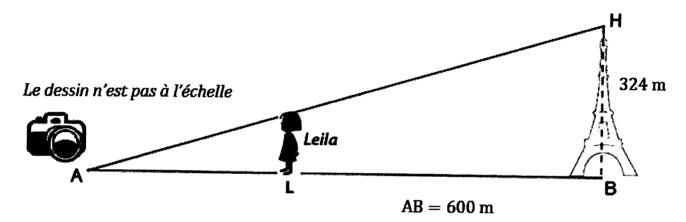
Source: www.securite-routiere.gouv.fr

1.

- a. Montrer qu'en 2016, il y a eu environ 3475 décès sur l'ensemble des routes en France.
- b. Des experts ont estimé que la baisse de la vitesse à 80 km/h aurait permis de sauver 400 vies en 2016. De quel pourcentage le nombre de morts sur l'ensemble des routes de France aurait-il baissé ? Donner une valeur approchée à 0,1% près.
- 2. En septembre 2018, des gendarmes ont effectué une série de contrôles sur une route dont la vitesse maximale autorisée est 80 km/h. Les résultats ont été entrés dans un tableur dans l'ordre croissant des vitesses. Malheureusement, les données de la colonne B ont été effacées.

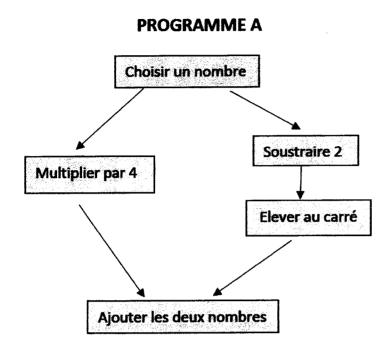
A	В	C	D	E	F	G	H	ı	i)	K
1 vitesse relevée (km/h)		72	77	79	82	86	90	91	97	TOTAL
2 nombre d'automobilistes		2	10	6	1	7	4	3	6	

- a. Calculer la moyenne des vitesses des automobilistes contrôlés qui ont dépassé la vitesse maximale autorisée. Donner une valeur approchée à 0,1 km/h près.
- **b.** Sachant que l'étendue des vitesses relevées est égale à 27 km/h et que la médiane est égale à 82 km/h, quelles sont les données manquantes dans la colonne B ?
- c. Quelle formule doit-on saisir dans la cellule K2 pour obtenir le nombre total d'automobilistes contrôlés ?


Exercice 4 (10 points)

Leila est en visite à Paris. Aujourd'hui, elle est au Champ de Mars où l'on peut voir la tour Eiffel dont la hauteur totale BH est 324 m.

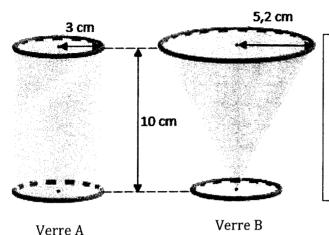
Elle pose son appareil photo au sol à une distance AB = 600 m du monument et le programme pour prendre une photo (voir le dessin ci-dessous).


- 1. Quelle est la mesure, au degré près, de l'angle \widehat{HAB} ?
- 2. Sachant que Leila mesure 1,70 m, à quelle distance AL de son appareil doit-elle se placer pour paraître aussi grande que la tour Eiffel sur sa photo ?

 Donner une valeur approchée du résultat au centimètre près.

Exercice 5 (22 points)

Voici deux programmes de calcul :


PROGRAMME B

- Choisir un nombre
- Calculer son carré
- Ajouter 6 au résultat.

- a. Montrer que, si l'on choisit le nombre 5, le résultat du programme A est 29.
 - b. Quel est le résultat du programme B si on choisit le nombre 5 ?
- 2. Si on nomme x le nombre choisi, expliquer pourquoi le résultat du programme A peut s'écrire $x^2 + 4$.
- 3. Quel est le résultat du programme B si l'on nomme x le nombre choisi?
- **4.** Les affirmations suivantes sont-elles vraies ou fausses ? Justifier les réponses et écrire les étapes des éventuels calculs :
 - a. « Si l'on choisit le nombre $\frac{2}{3}$, le résultat du programme B est $\frac{58}{9}$. »
 - b. « Si l'on choisit un nombre entier, le résultat du programme B est un nombre entier impair. »
 - c. « Le résultat du programme B est toujours un nombre positif. »
 - d. « Pour un même nombre entier choisi, les résultats des programmes A et B sont ou bien tous les deux des entiers pairs, ou bien tous les deux des entiers impairs. »

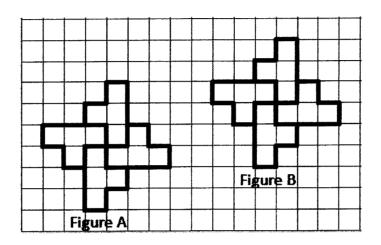
Exercice 6 (20 points)

Pour servir ses jus de fruits, un restaurateur a le choix entre deux types de verres : un verre cylindrique A de hauteur 10 cm et de rayon 3 cm et un verre conique B de hauteur 10 cm et de rayon 5,2 cm.

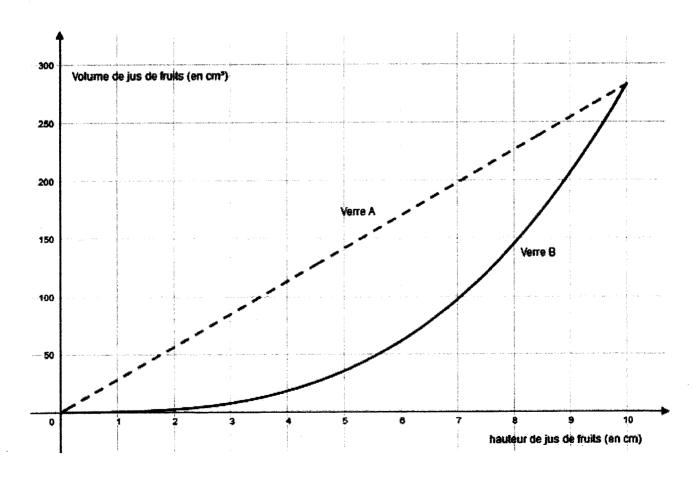
Rappels:

- Volume d'un cylindre de rayon r et de hauteur h: $\pi \times r^2 \times h$
- Volume d'un cône de rayon r et de hauteur h :

$$\frac{1}{3} \times \pi \times r^2 \times h$$


• $1 L = 1 dm^3$

Le graphique situé en **ANNEXE 1.2** représente le volume de jus de fruits dans chacun des verres en fonction de la hauteur de jus de fruits qu'ils contiennent.


- 1. Répondre aux questions suivantes à l'aide du graphique en ANNEXE 1.2 :
 - a. Pour quel verre le volume et la hauteur de jus de fruits sont-ils proportionnels ? Justifier.
 - b. Pour le verre A, quel est le volume de jus de fruits si la hauteur est de 5 cm?
 - c. Quelle est la hauteur de jus de fruits si on en verse 50 cm³ dans le verre B?
- 2. Montrer, par le calcul, que les deux verres ont le même volume total à 1 cm³ près.
- 3. Calculer la hauteur du jus de fruits servi dans le verre A pour que le volume de jus soit égal à 200 cm³. Donner une valeur approchée au centimètre près.
- **4.** Un restaurateur sert ses verres de telle sorte que la hauteur du jus de fruits dans le verre soit égale à 8 cm.
 - a. Par lecture graphique, déterminer quel type de verre le restaurateur doit choisir pour servir le plus grand nombre possible de verres avec 1 L de jus de fruits.
 - **b.** Par le calcul, déterminer le nombre maximum de verres A qu'il pourra servir avec 1 L de jus de fruits.

ANNEXE 1 – A rendre avec la copie

ANNEXE 1.1

ANNEXE 1.2

